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Abstract In this paper, we have developed an accurate and efficient Haar wavelet
method to solve film-pore diffusion model. Film-pore diffusion model is widely used
to determine study the kinetics of adsorption systems. To the best of our knowledge,
until now rigorous wavelet solution has been not reported for solving film-pore dif-
fusion model. The use of Haar wavelets is found to be accurate, simple, fast, flexible,
convenient, and computationally attractive. The power of the manageable method
is confirmed. It is shown that film-pore diffusion model satisfactorily describes the
kinetics of methylene blue adsorption onto three low-cost adsorbents, Gauva, teak and
gulmohar plant leaf powders, used in this study.

Keywords Methylene blue · Adsorption kinetics · Film-pore diffusion model ·
Low-cost adsorbents · Haar wavelet method
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Cs Surface concentration, mg dm−3

Co Initial bulk concentration, mg dm−3

dp Diameter of particle, m
Deff Internal effective diffusivity, m2 s−1

KL Langmuir adsorption constant, dm3mg−1

r Radial position in the particle, m
R Radius of the particle, m
qe Solid phase dye concentration at equilibrium, mg g−1

qi Solid phase dye concentration at grid i at time t, mg g−1

t Time, s or min
V Volume of solution, dm3

ε Particle porosity, –
ρp Particle density, kg m−3

kf External film transfer coefficient, m s−1

1 Introduction

Adsorption process has been proven to be one of the highly efficient methods for
removal of colors, odors, and organic and inorganic pollutants emanating from var-
ious industrial processes. Large amounts of dyes are used by textile industry and a
significant portion of these dyes are not consumed in the process and therefore let
out with the effluent. As the cost of commercial adsorbents is too high, interest for
using low-cost adsorbents for removal of dyes from textile effluents is continuously
growing. A recent survey indicates that, in India, on an average fresh water consumed
and effluent generated per kg of finished textile are 175 and 125 L respectively [1]. The
presence of dyes in aqueous effluents is highly objectionable as this affects the photo-
synthetic activity in receiving water body by reducing/preventing light penetration. As
the dyes are recalcitrant in nature it is difficult to treat them in conventional biological
treatment plant [2,3]. Various researchers have worked on biological degradation of
dyes. But, very often, the metabolic intermediates are found to be more toxic than the
original compound [4]. Therefore, identification of low-cost adsorbents is given more
attention by the researchers recently as commercial adsorbents like activated carbon
are too costly. Few recent studies investigating application of low cost adsorbents are:
jackfruit peel [5], pine apple stem [6], Ashoka (Saraca asoca) leaf powder [7], pom-
elo peel [8], Chara contraria [9], groundnut shell powder [10], broad been peels [11]
etc.

Adsorption of dye is complex process involving one or more of the following
consecutive steps (i) diffusion of dye molecules across the external liquid film sur-
rounding the solid particles, (ii) adsorption and desorption on the external surface
of the particle, (iii) internal diffusion of dye within the particle either by pore diffu-
sion, or surface diffusion or both and (iv) adsorption and desorption on the internal
surface of the particle. Since adsorption is a surface phenomena and majority of
the adsorbents used are porous, external and internal resistances to the mass trans-
fer of the solute play major role in controlling the rate of adsorption. In order
determine the rate controlling step and to understand the adsorption mechanism it
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is necessary to determine external mass transfer coefficient and internal pore dif-
fusivity. Simplified single resistance models are available to predict external film
transfer coefficients. These are robust models, efficient for quick estimation of mass
transfer parameters mentioned above. However, accurate values of the parameters
can only be obtained using more rigorous two resistance models. Film pore diffu-
sion model (FPDM) was employed successfully to describe the kinetics of meth-
ylene blue adsorption onto GLP, TLP and GUL. Diffusion based kinetic models
are too complex and require rigorous solution methods. For many of the diffusion
models pure analytical solution are not possible. In our previous paper we had
employed method of lines to solve film-pore diffusion model and had shown that
Film-pore model could describe the kinetics of adsorption of MB onto GLP, TLP
and GUL [1]. In this work, we have proposed a Haar solution to film-pore diffusion
model.

As a powerful mathematical tool, wavelet analysis has been widely used in image
digital processing, quantum field theory, numerical analysis and many other fields
in recent years. The Haar transform is one of the earliest examples of what is now
known as a dyadic, compact, orthonormal wavelet transform. The Haar function is
an odd rectangular pulse pair. Therefore, it is the simplest and oldest orthonormal
wavelet with compact support. Several definitions of the Haar functions and various
generalizations have been published in literature. Haar functions appear to be highly
attractive in variety of applications including image coding, binary logic design and
edge extraction.

Chen and Hsiao [12] first derived a Haar operational matrix for the integrals of the
Haar function vector and demonstrated the application of Haar analysis in dynamic
systems. Then Hsiao [13], who first proposed a Haar product matrix and a coef-
ficient matrix, laid down the pioneer work in state analysis of linear time delayed
systems via Haar wavelets. In order to take the advantages of the local property,
several authors had used the Haar wavelet to solve the differential and integral equa-
tions [14–18]. Lepik [19–21] had solved higher order as well as nonlinear ODEs
and some nonlinear evolution equations by Haar wavelet method. Hariharan et al.
[22–25] have introduced the solution of Fisher’s equation, Cahn-Allen equation,
Convection-diffusion equations and some nonlinear parabolic equations by the Haar
wavelet method.

The fundamental idea of Haar wavelet method is to convert the problem of solving
for the one-dimensional differential equation with constant coefficients, which satis-
fies the boundary conditions and initial conditions in to a group of algebraic equations,
which involves a finite number of variables.

2 Materials and methods

Detailed development of FPDM is described earlier by McKay et al. [26,27]. Solution
of FPDM by method of lines is described in our previous paper [1]. In the present paper
development of Haar solution is described in detailed and the results are compared
with our previous solution.
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2.1 Haar wavelet and its properties

2.1.1 Haar wavelet

Haar wavelet was a system of square wave; the first curve was marked up as h0(t),
the second curve marked up as h1(t) that is

h0(x) =
{

1, 0 ≤ x < 1
0, otherwise

(1)

h1(x) =
⎧⎨
⎩

1, 0 ≤ x < 1/2,

−1, 1/2 ≤ x < 1,

0, otherwise,
(2)

where h0(x) is scaling function, h1(x) is mother wavelet. In order to perform wavelet
transform, Haar wavelet uses dilations and translations of function, i.e. the transform
make the following function.

hn(x) = h1

(
2 j x − k

)
, n = 2 j + k, j ≥ 0, 0 ≤ k < 2 j . (3)

2.1.2 Function approximation

Any square integrable function y(x) ∈ L2 [0, 1) can be expanded by a Haar series of
infinite terms

y(x) =
∞∑

i=0

ci hi (x), i ∈ {0} ∪ N , (4)

where, the Haar coefficients ci are determined as, c0 = ∫ 1
0 y(x)h0(x)dx,

cn = 2 j
∫ 1

0 y(x)hi (x)dx, i = 2 j + k, j ≥ 0, 0 ≤ k < 2 j , x ∈ [0, 1) such that the
following integral square error ε is minimized:

ε =
1∫

0

[
y(x) −

m−1∑
i=0

ci hi (x)

]2

dx, m = 2 j , j ∈ {0} ∪ N . (5)

Usually, the series expansion contains infinite terms for smoothy(x). If y(x)is piece-
wise constant by itself, or may be approximated as piecewise constant during each
subinterval, then y(x) will be terminated at finite m terms, that is

y(x) =
m−1∑
i=0

ci hi (x) = cT
(m)h(m)(x) (6)

where the coefficients cT
(m) and the Haar function vector h(m)(x)are defined as cT

(m) =
[c0, c1, . . . , cm−1] and h(m)(x) = [h0(x), h1(x), . . . , hm−1(x)]T where ‘T’ means
transpose and m = 2 j .
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The first four Haar function vectors, which x = n/8, n = 1, 3, 5, 7 can be expressed
as follows

h4 (1/8) = [1, 1, 1, 0]T , h4 (3/8) = [1, 1,−1, 0]T ,

h4(5/8) = [1,−1, 0, 1]T , h4 (7/8) = [1,−1, 0,−1]T ,

which can be written in matrix form as

H4 = [h4(1/8), h4(3/8), h4(5/8), h4(7/8)]

H4 =

⎡
⎢⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1

⎤
⎥⎥⎦

,

In general, we have

Hm = [hm (1/2m) , hm (3/2m) , . . . , hm (2m − 1) /2m],

where H1 = [1], H2 =
(

1 1
1 −1

)
. The collocation points are identified as xl =

(2l − 1) /2m, l = 1, 2, . . . , m. In application, in order to avoid dealing with impulse
function, integration of the vector hm(x) given by

x∫
0

hm(t)dt ≈ Pmhm(x), x ∈ [0, 1], (7)

where Pm is the m × m operational matrix and is given byP(m) =
1

2m

(
2m P(m/2) −H(m/2)

H−1
(m/2) O

)

where O is a null matrix of order m
2 × m

2 .

P1 = [1/2],

P2 = 1
4

(
2 −1
1 0

)
, P4 = 1

16

⎡
⎢⎢⎣

8 −4 −2 −2
4 0 −2 2
1 1 0 0
1 −1 0 0

⎤
⎥⎥⎦,

P8 = 1
64

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

32 −16 −8 −8 −4 −4 −4 −4
16 0 −8 8 −4 −4 4 4
4 4 0 0 −4 4 0 0
4 4 0 0 −4 4 0 0
1 1 2 0 0 0 0 0
1 1 −2 0 0 0 0 0
1 −1 0 2 0 0 0 0
1 −1 0 −2 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Table 1 Comparison between Haar wavelet method (HWM) and method of lines (MOL) by obtaining the
mass transfer coefficients using film-pore diffusion model adsorption of MB onto GLP and m = 16, t = 10 s

Temperature
(K)

C0(mg dm−3) k f (ms−1) Deff (m2s−1) Error

MOL
(M)

HWM
(H)

MOL
(M)

HWM
(H)

EM EH

303 50 1.00 × 10−6 3.00 × 10−6 1.74 × 10−13 2.54 × 10−13 1.197 0.938
100 0.140 0.129
150 0.935 0.824
200 1.610 1.102

313 50 1.71 × 10−6 3.45 × 10−6 6.46 × 10−13 9.26 × 10−13 1.462 1.221
100 1.120 0.927
150 1.267 1.016
200 7.570 5.112

323 50 4.27 × 10−6 4.75 × 10−6 3.11 × 10−13 5.31 × 10−13 0.856 0.284
100 0.160 0.000
150 2.168 1.208
200 3.164 1.016

EM Error by method of lines
EH Error by Haar wavelet method

It should be noted that calculations for P(m) and H(m)must be carried out only once;
after that they will be applicable for solving whatever differential equations.

The fast capability of HT should be impressive (See Refs. [12,19–25]). Table 1
shows the numbers of additions and multiplications for these three transforms.

In practical applications, a small number of terms increases the calculation speed
and saves memory storage while a large number of terms improve resolution accu-
racy. Therefore, it is essential to have a trade-off between calculation speed, memory
saving, and the resolution accuracy and this has been considered in the analysis.

2.1.3 Method of solution

Before, discussing the method a solution a brief introduction of film-pore diffusion
model is given. Film-pore diffusion model assumes that both external film and inter-
nal pore diffusion resistances are significant and play a role in controlling the mass
transfer. Thus, the governing equations are:

(i) Assuming linear driving force the rate of external mass transfer is given by:

dCt

dt
= −k f

As

V
(Ct − Cs) (8)

(ii) Within the pore diffusion of solutes follows Fick’s law of diffusion. Following
equation is attained by making a mass balance of dye in a spherical:

ε
∂Ci

∂t
+ ρp

∂qi

∂t
= Deff

[
∂2Ci

∂r2 + 1

r

∂Ci

∂r

]
(9)
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Corresponding initial condition and boundary conditions are:

I.C.: At t = 0, Ci = 0 for 0 ≤ r ≤ R (10)

B.C.1: ∂Ci

∂r
= 0 at r = 0. (11)

B.C.2: k f (Ct − Cs) = Deff
∂Ci

∂r

∣∣∣∣
r=R

(12)

(iii) Solid phase concentration at any radial location may be expressed as function
of aqueous phase concentration at that location as follows:

qi = f(Ci) (13)

Assuming equilibrium within the pore eq. (13) is described by relevant isotherm
expression of the system. Substituting Eq. 13 in Eq. 9 we get:

ε
∂Ci

∂t
+ ρp

∂ f (Ci )

∂t
= Deff

[
∂2Ci

∂r2 + 1

r

∂Ci

∂r

]
(14)

Since the system follow Langmuir isotherm [1],

qi = f (Ci ) = qe KLCi

1 + KLCi
(15)

Following dimensionless variables were defined to convert the above equations into
dimensionless form,

Z = r
R ; Ci = Ci

Co
; Ct = Ct

Co
; Bi = k f R

Deff
;
}

(16)

After substituting the dimensionless variables in Eq. (14) can be rewritten as
follows:

∂Ci

∂τ
= A(Ci )

[
∂2Ci

∂ Z2 + 1

Z

∂Ci

∂ Z

]
(17)

where,

A(Ci ) = 1(
εp +

(
qhρp
Co

)(
1+bCo(

1+bCoCi
)2

)) (18)

Consider the equation

˙̄Ci (Z , τ ) = A(C̄i )

[
C̄ ′′

i +
(

1

Z

)
C̄ ′

i

]
(19)
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Let us divide the interval (0, 1] into N equal parts of length �τ = (0, 1]/N and

denoteτs = (s − 1)�t, s = 1, 2, . . . N . We assume that ˙̄C ′′ (Z , τ )can be expanded in
terms of Haar wavelets as formula

˙̄C ′′
i (Z , τ ) =

m−1∑
i=0

cs(i)hi (Z) = cT
(m)h(m)(Z) (20)

where . and ′ means differentiation with respect to t and x respectively, the row vector
cT
(m) is constant in the subinterval τ ∈ (τs, τs+1]

Integrating formula (20) with respect to τ from τs to τ and twice with respect to Z
from 0 to x , we obtain

C̄ ′′
i (Z , τ ) = (τ − τs)c

T
(m)h(m)(Z) + C̄ ′′

i (Z , τs) (21)

C̄i (Z , τ ) = (τ − τs)c
T
(m)Q(m)h(m)(Z) + C̄i (Z , τs) − C̄i (0, τs)

+Z [C̄ ′
i (0, τ ) − C̄ ′

i (0, τs)] + C̄i (0, τ ) (22)

C̄ ′
i (Z , τ ) = (τ − τs)c

T
(m) P(m)h(m)(Z) + C̄ ′

i (Z , τs) − C̄i (0, τs) + C̄ ′
i (0, τ ) (23)

˙̄Ci (Z , τ ) = cT
(m)Q(m)h(m)(Z) + Z ˙̄Ci (0, τ ) + ˙̄Ci (0, τ ) (24)

with the boundary conditions, we obtain

C̄i (0, τs) = g0(τs), C̄i (1, τs) = g1(τs)

˙̄Ci (0, τ ) = g′
0(τ ), ˙̄Ci (1, τ ) = g′

1(τ )

Putting x = 1in formulae (21)–(24), we have

C̄ ′
i (0, τ ) − C̄ ′

i (0, τs) = −(τ − τs)c
T
(m) P(m)h(m)(Z) + g1(τ )

−g0(τ ) − g1(τs) + g0(τs) (25)
˙̄C ′

i (0, τ ) = g′
1(τ ) − cT

(m)Q(m)h(m)(Z) f − g′
0(τ ) (26)

where the vector f is defined as

f = [1, 0, . . . , 0︸ ︷︷ ︸
(m−1)elements

]T
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Substituting formulae (25) and (26) into formulae (21)–(24), and discretizising the
results by assuming Z → Zl , τ → τs+1 we obtain

C̄ ′′
i (Zl , τs+1) = (τs+1 − τs)c

T
(m)h(m) (Zl) + C̄ ′′

i (Zl , τs) (27)

C̄ ′
i (Zl , τs+1) = (τs+1 − τs)c

T
(m)Q(m)h(m)(Zl) + C̄i (Zl , τs) − g0(τs) + g0(τs+1)

+Zl
[ − (τs+1 − τs)c

T
(m) P(m) f + gl(τs+1)

−g0(τs+1) − g1(τs) + g0(τs)
]

(28)

˙̄Ci (Zl , τs+1) = cT
(m)Q(m)h(m)(Z) + Z ˙̄Ci (0, τ ) + ˙̄Ci (0, τ ) (29)

C̄i (Zl , τs+1) = cT
(m)Q(m)h(m)(Z) + g′

0(τs+1) + Zl

[
− cT

(m) P(m) f

+g′
1(τs+1) − g′

0(τs+1)
]

(30)

In the following the scheme

˙̄Ci (Zl , τs+1) = A(C̄i )

[
C̄ ′′

i (Zl , τs+1) + 1

Z
C̄ ′

i (Zl , τs+1)

]
(31)

which leads us from the time layer τs to τs+1 is used.
Substituting formulae (27)–(30) into the formula (31), we gain

cT
(m)Q(m)h(m)(Zl) + Zl

[
−cT

(m) P(m) f + g′
1(τs+1) − g′

0(τs+1)
]

+ g′
0(τs+1)

= A(C̄i )

⎡
⎣ (τs+1−τs)cT

(m)h(m) (Zl)+(τs+1−τs)cT
(m)Q(m)h(m)(Zl)

+C̄i (Zl , τs)−g0(τs)+g0(τs+1)

+Zl [−(τs+1−τs)cT
(m) P(m) f +gl(τs+1) − g0(τs+1)−g1(τs)+g0(τs)]

⎤
⎦

From the above formula, the wavelet coefficients cT
(m)can be successively calculated.

Here A(C̄i ) are constants (linear) and ∈ = 0.5, ρ = 500.
Table 1 gives a comparison of Haar wavelet solutions and method of lines. It is

evident that Haar wavelet solutions are better than that of the method of lines. Value of
absolute error decreased when m was increased. The results show that combining with
wavelet matrix, the method in this paper can be effectively used in numerical calculus
for constant coefficient differential equations, and that the method is feasible. At the
same time with the sparse nature of Haar wavelet matrix, compared with the method
of lines [1], using the above method can greatly reduce the computation and from
the above results, we can see that the numerical solutions are in good agreement with
exact solution. The power of the manageable method is thus confirmed.

All the numerical experiments presented in this section were computed in double
precision with some MATLAB codes on a personal computer System with Processor
Intel(R) Core(TM) 2 Duo CPU T5470 @ 1.60 GHz (2CPUs) and 1 GB RAM.
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3 Conclusion

In this paper FPDM model equations had been solved by the Haar wavelets method.
The external film transfer coefficients and internal pore diffusivities were obtained.
Comparing the magnitude of the errors, it can be seen that the Haar wavelet method
could predict the concentration decay curve for the adsorption of methylene blue
onto TLP, GUL and GLP very closely. The sparseness in Haar wavelets based opera-
tional matrices gives precise accuracy in solving numerical equations by Haar wavelet
method. According to this scheme the spatial operators are approximated by the Haar
wavelet method and the time derivation operators by the finite difference method.
We transform the FPDM model equations into a linear system of algebraic equa-
tions which is easily and efficiently to solve. We found that Haar wavelets method
had good approximation effect by comparing with method of lines of the FPDM
model equations at the same time. It is worth mentioning that Haar solution pro-
vides excellent results even for small values of m(m = 16). For higher values of
m(i.e., m = 32, m = 64, m = 128, m = 256), we can obtain the results closer to the
real values. The method with far less degrees of freedom and with smaller CPU time
provides better solutions than classical ones.

Acknowledgments The authors are very grateful to the reviewers for their useful comments and sugges-
tions which have led to improvement the quality of the paper.
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